Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
BackgroundForecasting the responses of natural populations to environmental change is a key priority in the management of ecological systems. This is challenging because the dynamics of multi-species ecological communities are influenced by many factors. Populations can exhibit complex, nonlinear responses to environmental change, often over multiple temporal lags. In addition, biotic interactions, and other sources of multi-species dependence, are major contributors to patterns of population variation. Theory suggests that near-term ecological forecasts of population abundances can be improved by modelling these dependencies, but empirical support for this idea is lacking. MethodsWe test whether models that learn from multiple species, both to estimate nonlinear environmental effects and temporal interactions, improve ecological forecasts compared to simpler single species models for a semi-arid rodent community. Using dynamic generalized additive models, we analyze time series of monthly captures for nine rodent species over 25 years. ResultsModel comparisons provide strong evidence that multi-species dependencies improve both hindcast and forecast performance, as models that captured these effects gave superior predictions than models that ignored them. We show that changes in abundance for some species can have delayed, nonlinear effects on others, and that lagged, nonlinear effects of temperature and vegetation greenness are key drivers of changes in abundance for this system. ConclusionsOur findings highlight that multivariate models are useful not only to improve near-term ecological forecasts but also to ask targeted questions about ecological interactions and drivers of change. This study emphasizes the importance of jointly modelling species’ shared responses to the environment and their delayed temporal interactions when teasing apart community dynamics.more » « lessFree, publicly-accessible full text available January 1, 2026
-
Wildlife population monitoring over large geographic areas is increasingly feasible due to developments in aerial survey methods coupled with the use of computer vision models for identifying and classifying individual organisms. However, aerial surveys still occur infrequently, and there are often long delays between the acquisition of airborne imagery and its conversion into population monitoring data. Near real‐time monitoring is increasingly important for active management decisions and ecological forecasting. Accomplishing this over large scales requires a combination of airborne imagery, computer vision models to process imagery into information on individual organisms, and automated workflows to ensure that imagery is quickly processed into data following acquisition. Here we present our end‐to‐end workflow for conducting near real‐time monitoring of wading birds in the Everglades, Florida, USA. Imagery is acquired as frequently as weekly using uncrewed aircraft systems (aka drones), processed into orthomosaics (using Agisoft metashape), converted into individual‐level species data using a Retinanet‐50 object detector, post‐processed, archived, and presented on a web‐based visualization platform (using Shiny). The main components of the workflow are automated using Snakemake. The underlying computer vision model provides accurate object detection, species classification, and both total and species‐level counts for five out of six target species (White Ibis, Great Egret, Great Blue Heron, Wood Stork, and Roseate Spoonbill). The model performed poorly for Snowy Egrets due to the small number of labels and difficulty distinguishing them from White Ibis (the most abundant species). By automating the post‐survey processing, data on the populations of these species is available in near real‐time (<1 week from the date of the survey) providing information at the time scales needed for ecological forecasting and active management.more » « less
-
Abstract Remote sensing of forested landscapes can transform the speed, scale and cost of forest research. The delineation of individual trees in remote sensing images is an essential task in forest analysis. Here we introduce a newPythonpackage, DeepForest that detects individual trees in high resolution RGB imagery using deep learning.While deep learning has proven highly effective in a range of computer vision tasks, it requires large amounts of training data that are typically difficult to obtain in ecological studies. DeepForest overcomes this limitation by including a model pretrained on over 30 million algorithmically generated crowns from 22 forests and fine‐tuned using 10,000 hand‐labelled crowns from six forests.The package supports the application of this general model to new data, fine tuning the model to new datasets with user labelled crowns, training new models and evaluating model predictions. This simplifies the process of using and retraining deep learning models for a range of forests, sensors and spatial resolutions.We illustrate the workflow of DeepForest using data from the National Ecological Observatory Network, a tropical forest in French Guiana, and street trees from Portland, Oregon.more » « less
An official website of the United States government
